

Radiation protection

Goal

Minimize the harmful effects from ionizing radiation

Principles

Justifiable exposure

• Wheter the radiation exposure benefits outweigh the risks

Dose limits

• Exposures should be below the established limits (medical, biologic, etc)

Optimisation

• Radiation exposure must be **ALARA**: As Low As Reasonable Achievable

Categories

Public radiation protection

 Protection of individual members of the public and of population in general

Occupational radiation protection

 Protection of workers when their exposure is directly related to their work

Protection of patiens

- Protection of people exposed to radiation as part of the
- ir diagnosis or treatment

Did you know?

Taking Potassium Iodine (KI) saturates our body (specifically the thyroid gland) with harmless iodine. Thus, our bodies are unable to absorb radioactive *iodine* (131*I*).

Commandments of radioprotection are based on reducing radiation exposure and/or mitigate the radiation effects

Protecting yourself against radiation

Shielding effectiveness depends on the radiation type, energy, and material and thickness of the shield.

Radiation exposure situations

Existing

Planned

High Energy

Radioactive decay types and radiation penetration

Nucleus of

